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The nervous system maintains physiological homeostasis through
reflex pathways that modulate organ function. This process begins
when changes in the internal milieu (e.g., blood pressure, temper-
ature, or pH) activate visceral sensory neurons that transmit action
potentials along the vagus nerve to the brainstem. IL-1β and TNF,
inflammatory cytokines produced by immune cells during infection
and injury, and other inflammatory mediators have been implicated
in activating sensory action potentials in the vagus nerve. However,
it remains unclear whether neural responses encode cytokine-
specific information. Here we develop methods to isolate and de-
code specific neural signals to discriminate between two different
cytokines. Nerve impulses recorded from the vagus nerve of mice
exposed to IL-1β and TNF were sorted into groups based on their
shape and amplitude, and their respective firing rates were com-
puted. This revealed sensory neural groups responding specifically
to TNF and IL-1β in a dose-dependent manner. These cytokine-
mediated responses were subsequently decoded using a Naive
Bayes algorithm that discriminated between no exposure and ex-
posures to IL-1β and TNF (mean successful identification rate 82.9 ±
17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO
mice were devoid of IL-1β–related signals but retained their re-
sponses to TNF. Genetic ablation of TRPV1 neurons attenuated the
vagus neural signals mediated by IL-1β, and distal lidocaine nerve
block attenuated all vagus neural signals recorded. The results
obtained in this study using the methodological framework suggest
that cytokine-specific information is present in sensory neural sig-
nals within the vagus nerve.
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Evolutionary pressure, applied for millions of years, shaped the
mammalian nervous system to control physiological homeo-

stasis. Oxygenation, temperature, pH, blood pressure, hormones,
mechanical factors, and metabolites activate sensory neurons to
transmit action potentials to the spinal cord and brainstem.
These sensory signals comprise the afferent arcs of basic reflex
circuits that are activated by changes in the body’s external and
internal environment. This is the first step in modulating the
outflow of motor neurons in the efferent arc of reflex circuits
that control homeostasis. Reflex circuits regulate cellular func-
tion, metabolism, and blood flow in the visceral organs, thereby
maintaining balanced output within a relatively narrow healthy
and functional range. The vagus nerve, a paired structure arising
in the brainstem and innervating the visceral organs, is com-
prised of 80,000–100,000 fibers in humans (1). It is the major
sensory conduit for transmitting sensory signals from organs to
the brain.
A large body of prior work defined reflex mechanisms con-

trolling the cardiovascular, pulmonary, gastrointestinal, renal,
hepatic, and endocrine systems, but only recently did advances in
neuroscience and immunology reveal previously unrecognized
mechanisms for the reflex control of inflammation (2, 3). In-
fection or injury activates immune cells to release cytokines,
including TNF and IL-1β, and other factors that mediate in-
flammation. The production of these cytokines in the spleen is

inhibited by neural signals that arise in the vagus nerve, travel in
the splenic nerve, and culminate on lymphocytes that are acti-
vated to produce acetylcholine, a neurotransmitter molecule that
interacts with its cognate receptor, α7 nAChR, expressed on
macrophages and monocytes (3, 4). Acetylcholine-induced signal
transduction increases intracellular calcium, decreases nuclear
translocation of NFκB, stabilizes mitochondrial membranes, and
inhibits inflammasome activity to reduce cytokine production
(4). This prototypical neuronal reflex circuit is termed the “in-
flammatory reflex” (2, 5, 6). Targeting the inflammatory reflex
using bioelectronic devices reduces cytokine production and in-
flammation in preclinical animal models of inflammatory dis-
eases and in patients with rheumatoid arthritis and Crohn’s
disease (2, 6–10). The molecular mechanisms of the efferent arc
are well defined, but considerably less is known about the afferent
arc of the inflammatory reflex.
Early work revealed that afferent signals transmitted in the

vagus nerve are required for the manifestation of a febrile re-
sponse to IL-1β in rodents (11). Afferent vagus nerve signals are
also implicated in mediating the development of sickness behavior
in rodents, i.e., the syndrome of anorexia, behavioral withdrawal,
and lethargy occurring when mammals are exposed to inflammatory
challenges (12–14). Studies using vagus nerve-recording electrodes
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in rats revealed that IL-1β administration given by intraportal
injections increased the overall amplitude of the recorded ac-
tivity of the vagus nerve (15, 16). Administration of endotoxin in
healthy human subjects, experimental models, and clinical
studies of rheumatoid arthritis and inflammatory bowel disease
was associated with significant decreases in vagus nerve activity
as measured by heart rate variability (17–22).
We have previously developed signal-processing tools to iden-

tify specific components of neural activity recorded using in-
tracortical brain electrodes (23, 24). These recordings were
comprised of the aggregate activity of neurons surrounding each
intracortical electrode. Recorded signals from cerebral cortex
were subjected to signal-processing techniques to assess responses
to the subject’s intended motor commands (23) or oculomotor
modulations of visual processing (25, 26). These methods enabled
the identification of functional neural circuits in response to spe-
cific behavior. We recently reported that administration of cyto-
kines to mice induces sensory vagus nerve activity in a dose- and
receptor-dependent manner (27). However, it was previously un-
known whether it is possible to identify cytokine-specific neural
signals encoded in the murine vagus nerve. Here, we developed a

framework to isolate and decode the neural activity recorded on
the surface of the vagus nerve in mice to identify groups of neu-
rons firing in response to specific cytokines.

Results
Detection and Classification of Neural Activity. We recorded from
the surface of the cervical vagus nerve in anesthetized mice using
the CorTec Micro Cuff Sling bipolar electrodes (Fig. 1A). The
raw recording acquired from the surface of the vagus nerve (Figs.
1D and 2A) included short-duration waveforms (<3 ms in width)
that resembled neural impulses in their shape and rate (Fig. 1D).
To confirm that these impulses are neural, lidocaine was applied
to the nerve at the cervical level, distal to the electrode (Meth-
ods). As expected, we observed a significant decrease (P < 0.001,
two-paired t test) in the rate of impulse activity of the nerve (Fig.
1D, Upper), with all impulses significantly attenuated or completely
disappearing within 10 s after application of lidocaine (Fig. 1D,
Lower). These experiments provided direct evidence that these
impulses are the result of the propagating activity of specific neural
pathways through single or multiple fibers discharging simultaneously.
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Fig. 1. Nerve recording interface, experimental design, preprocessing methodological framework, and raw surface recordings before and after lidocaine
administration. (A) Photograph of the bipolar cuff electrode recording activity from the surface of the cervical vagus nerve of mice. (B) Schematic diagram of
the cytokine-injection experiments, with TNF injected first and IL-1β second or IL-1β injected first and TNF injected second. (C) Schematic diagram of the
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The complete recording. (Lower) A zoomed-in portion of the recording around the time of the lidocaine drop, with respiratory modulations colored red.

E4844 | www.pnas.org/cgi/doi/10.1073/pnas.1719083115 Zanos et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
14

, 2
02

1 

www.pnas.org/cgi/doi/10.1073/pnas.1719083115


www.manaraa.com

In agreement with previous studies (27–29) these impulses are termed
“compound action potentials” (CAPs).
The raw recording also included nonneural signals from cardiac,

respiratory, and skeletomuscular activity. To separate the neural
activity from nonneural signals, the raw data were filtered using
wavelet decomposition that suppressed the lower-frequency car-
diac signal (Fig. 2B). An adaptive thresholding method was used
to identify individual impulses and account for respiratory-related
modulations or changes in the nerve–electrode contact during the
experiment. Applying these methods, we observed that the com-
puted threshold follows respiratory modulations and identified
neural impulses that occurred during and between these modu-
lations (Fig. 2C).
Several factors (such as the number of fibers discharging and

their size, propagation speed, and location relative to the re-
cording electrode) are known to affect the shape and amplitude of
the impulses detected in recordings (29, 30). Thus, sorting these
waveforms by their shape and amplitude enables the examination
of separate neural sensory groups. To this end, the proposed
framework combined dimensionality reduction and unsupervised
classification algorithms. Dimensionality reduction through the
t-distributed stochastic neighbor embedding (t-SNE) method was
employed to enable efficient visualization and clustering of the
different groups of waveforms (Fig. 2D). Unsupervised classifica-
tion through the density-based spatial clustering of applications

with noise (DBSCAN) algorithm determined the number of
groups of waveforms and assigned each waveform (point in the
dimensionality-reduced space) to a specific group (Fig. 2D). The
amplitude and the shape of the waveforms within each clustered
group differed significantly among groups (Fig. 2E). Moreover,
neural groups are characterized by different firing-rate behaviors,
as captured by the inter-impulse–interval histograms, which dis-
play the distribution of the intervals between two consecutive
impulses. Finally, by computing the firing rates in CAPs per sec-
ond using a 1-s binning window and a 30-s smoothing window, we
derived the activity of the corresponding neural groups (Fig. 2E).

Administration of TNF and IL-1β to Mice Mediates Specific Vagus
Nerve Firing Patterns. We and others have previously established
that TNF, IL-1β, and other cytokines specifically activate calcium
channels and action potentials in sensory neurons in the nodose
ganglion and dorsal root ganglion (27, 31–36). To identify
whether groups of neurons fire in response to TNF and IL-1β
exposure, vagus nerve activity was recorded in wild-type mice
(n = 39). We observed that specific groups of neurons changed
their firing rates after TNF injection (Fig. 3A). Their response
increased, plateaued, and persisted through the remainder of the
recording. Subsequent IL-1β injection in the same animals did
not affect the TNF-mediated response but instead triggered a
response from another group of neurons (Fig. 3A). These results
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Fig. 2. Preprocessing framework. (A) The raw recorded signal. (B) Wavelet decomposition. (C) Adaptive thresholding. (D) Dimensionality reduction through
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were recapitulated in separate groups of animals that received
IL-1β before the administration of TNF (Fig. 3B). These ob-
servations were tested across 39 mice by determining the number
of responders to cytokine injections (Table 1). Mice were defined
as “responders” when at least one CAP group deviated by 2 SDs
from the peri-injection mean firing rate for at least one-third of
the postinjection time period. We observed a response rate of
45% in animals receiving TNF first (9 of 20 mice) and a 73.7%
response rate in the group receiving IL-1β first (14 of 19 mice).
The cytokine-specific signals were not observed when mice re-
ceived two injections of saline instead of TNF and IL-1β (n = 7)
(Fig. 3C). These results were replicated in C57Black6 strain mice
(Table 2 and SI Appendix, Fig. S2). To determine the afferent
nature of these signals, we performed proximal vagotomy before
TNF and IL-1β exposure and recorded vagus nerve activity in
wild-type mice (n = 4). We observed both TNF- and IL-1β–
related responses (Fig. 3D), with a response rate of 75% (three
of four mice), similar to the intact vagus nerve recordings, pro-
viding evidence of their afferent, sensory nature.
Inspection of the recordings revealed that bursts of sensory neural

group activity were synchronized with respiratory-related modula-
tions in the vagus nerve recordings (Fig. 4A). Using a respiratory-
modulation detector algorithm (Methods), we quantified the number
of impulses that occur during respiratory modulation and compared

it with the total number of spikes for each CAP group. Twenty-three
of the 29 detected groups that responded to cytokine injections were
deemed respiration synchronized (over half of the impulses occurred
during the respiratory modulation). To exclude the possibility that
the observed firing-rate changes were mediated by similar changes in
the respiratory-modulation rate or duration, we measured both rate
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Fig. 3. Examples of neural responses to cytokines. Each colored trace represents the response rate against time of a different CAP. Solid lines correspond to lower-
firing-rate CAPs (maximum of 15 CAPs/s), and dotted lines correspond to high-firing-rate CAPs (maximum of 80 CAPs/s). Right subpanel for all panels includes a subset
of detected CAP waveforms and the median of each CAP group in thicker lines. (A) A vagus nerve response curve, along with the respective decoding accuracies, in a
mouse injected first with 35 ng/kg IL-1β and then with 20 μg/kg TNF. (B) A vagus nerve response curve, along with the respective decoding accuracies, in a mouse
injected first with 20 μg/kg TNF and then with 35 ng/kg IL-1β. (C) An example of neural responses to the saline injections control condition, where there is no
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Table 1. Population results of the responders and decoding
algorithm on all experiments

Group Responders/total Percent responders

Wild-type BALB\C, TNF
1st → IL-1β 2nd

9/20 45

Wild-type BALB\C, IL-1β
1st → TNF 2nd

14/19 73.7

Wild-type BALB\C, double
saline

2/7 28.6

Wild-type C57Black6, IL-1β
1st → TNF 2nd

4/7 57.1

Proximal vagotomy, IL-1β
1st → TNF 2nd

3/4 75.0

TRPV1 cell-depleted IL-1β 1/6 16.6
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and duration across the length of all our recordings (Fig. 4B). The
time courses of the respiratory-modulation rate and duration were
consistent in all our recordings (Fig. 4B). These data indicate that
changes in respiratory modulation or duration do not influence the
firing rates of the sensory neural groups.
To confirm that the impulses co-occurring with the respiratory

modulations were of neural origin and not due to artifacts from
muscle activity or any other extraneural source, we examined
whether firing rates attenuated after lidocaine administration.
The respiratory-synchronized CAPs significantly attenuated or
completely disappeared within 10 s after lidocaine administra-
tion (Fig. 1D, Lower). On the contrary, these recordings pre-
served small-amplitude modulations of the noise floor related to
the respiratory cycle along with the cardiac artifacts. These re-
sults provided direct evidence that the respiratory-modulation–
synchronized CAPs are of neural origin. We quantified these
observations across all lidocaine experiments (n = 6 mice) by
computing the normalized mean firing rate of all CAP groups
before and after the lidocaine administration (300 s of activity in
each window). This analysis revealed, as expected, a significant
(P < 0.001, two-sample t test) drop in the firing rates of all CAP
groups, respiratory synchronized or not (Fig. 4C). It should be
noted that the residual activity after the lidocaine administration
consists of attenuated impulse amplitudes and is mostly due to
the adaptive nature of our impulse-detection threshold.
To automate the identification of cytokine-specific signals, we

used a neural decoding algorithm based on the Naive Bayes
method. Using the firing rates of different CAP groups as the
input data, the algorithm attempted to identify the no-exposure
(baseline) or exposure to a cytokine (TNF or IL-1β) conditions
(Fig. 5A). To train this algorithm, neuronal responses were split
into three groups of firing-rate values corresponding to the three
different conditions (Fig. 5B), and the CAP groups responding to
each injection were identified based on our responder rules, as
outlined in Methods (Fig. 5C, Left). This decoding algorithm
identified three different conditions in cases where either TNF
or IL-1β was injected first (Figs. 5C, Right and 6 A and B) and
performed poorly on the recording from an animal receiving only
saline as the control (Fig. 6C). True positive fractions (percent
correct) of all out-of-sample predictions (Table 2) were calculated
to quantify the predictive accuracy of the decoding algorithm
across all experiments. The success of decoding across all injec-
tions and conditions was 82.9 ± 17.8% correct; the probability of
success of a random choice among the three classes was 33%.

Vagus Nerve Recordings of IL1 Receptor-KO Mice Contain Signals
Specific to TNF and Not to IL-1β. The IL-1 receptor (IL-1R) has
been implicated in the mediation of vagus nerve responses to IL-
1β (11, 15, 16, 27). We next evaluated the changes in sensory
neural group responses in IL-1R–KO mice. As shown in Fig. 7A,
administration of IL-1β to IL-1R–KO mice did not induce vagus
nerve enhancement. In contrast, TNF administration resulted in
a significant change in the vagus nerve firing rate (Fig. 7A).
Although the decoding algorithm failed to discriminate between

baseline and IL-1β, it correctly identified the TNF-mediated
signal in IL-1R–KO mice (Fig. 7B), with a population success
rate of 92.3% ± 5.9% (Table 2). These results demonstrate that
the responses of sensory neural groups to IL-1β are mediated by
the IL-1 receptor (IL-1R). The observed vagus nerve activity,
mediated by TNF in the IL-1R–KO mice, gives direct evidence
of cytokine-specific neural sensory groups.

TRPV1+ Neurons Are Required to Mediate Cytokine CAPs. TRPV1, a
cation channel that is activated by capsaicin, heat, and acidic
conditions as well as by other noxious stimuli, has been implicated
in the transmission of pain signals and fever associated with in-
flammation (37–41). TRPV1 is expressed by a subset of sensory
neurons whose cell bodies reside in dorsal root, trigeminal, and
nodose/jugular ganglia (42, 43) and whose neuronal fiber types are
mainly C and the slow-conducting Aδ fibers (44). TRPV1 is
expressed in the subset of vagus afferent fibers and in brain nuclei

Table 2. Performance of the decoding algorithm in successfully discriminating between the
baseline, TNF, and IL-1β injection periods

Group Baseline TNF IL-1β

Wild-type BALB\C, TNF 1st → IL-1β 2nd 93.5 ± 14.6 74.6 ± 18.5 88.7 ± 12.3
Wild-type BALB\C, IL-1β 1st → TNF 2nd 79.6 ± 28.6 69.8 ± 21.0 91.26 ± 11.9
Wild-type C57Black6, IL-1β 1st → TNF 2nd 83.9 ± 16.8 98.1 ± 1.7 85.7 ± 10.5
Proximal vagotomy, IL-1β 1st → TNF 2nd 83.1 ± 18.7 94.0 ± 4.7 57.6 ± 29.2
IL-1-R–KO, IL-1β 1st → TNF 2nd 60.9 ± 42.1 92.3 ± 5.9 17.5 ± 17.6

Data are shown as mean ± SD. Top row: TNF first-injection experiments; second row: IL-1β first-injection
experiments in BALB\C mice; third row: IL-1β first-injection experiments in C57Black6 mice; fourth row: proximal
vagotomy experiments; fifth row: IL-1R–KO experiments.
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that receive vagus afferents and project to the nucleus of the
solitary tract (45, 46). To determine whether cytokine-mediated
responses propagate through TRPV1+ fibers, we generated TRPV1-
Cre/diphtheria toxin A (DTA) mice to selectively ablate TRPV1+

cells. Vagus nerve activity was recorded in TRPV1-Cre/DTA mice
in response to IL-1β administration, and no change in vagus nerve
activity was observed following the administration of IL-1β (Fig.
7C). When looking at population results, we found that the responder
rate of TRPV1-Cre/DTA mice to any of the cytokine injections
was 16.6%, lower than the average responder rate of 58.9% in naive
mice. These results indicate that IL-1β–specific sensory neural
groups require TRPV1+ fibers in the vagus nerve.

Administration of Different Doses of Cytokines Evokes Different
Firing Patterns. We have previously recorded vagus nerve activ-
ity while administering different doses of TNF and IL-1β (27),
demonstrating changes in the overall response rate of CAPs. To
demonstrate that the same decoding framework can be used to
identify exposure not only to different types of cytokines but also
to different doses of a cytokine, we performed recordings injecting
two different doses of the same cytokine (TNF or IL-1β). For TNF,
the first injection was our previously used dose of 20 μg/kg, which
was followed by a higher dose of 200 μg/kg; for IL-1β the first
injection was our previously used dose of 35 ng/kg, which was
followed by a higher dose of 350 ng/kg. As we demonstrated
earlier, upon administration of TNF (20 μg/kg) or IL-1β (35 ng/kg),
specific groups of neurons change their firing rate (Fig. 8 A and B).
Subsequent injection of IL-1β induced a response from the same
sensory group (yellow trace in Fig. 8A) as the first injection, with an
increased firing rate and faster response time. The higher dose of
IL-1β also evokes a delayed response from a different CAP group

(red trace in Fig. 8A). Subsequent injection of TNF induces a
similar response pattern (dark red trace in Fig. 8B). These obser-
vations were tested across 13 mice by determining the number of
responders to double-dose injections (Table 3). Using the firing
rates of these CAP groups as the input data to our decoding
algorithm, we were able to discriminate between low and high
doses of each cytokine (Fig. 8 C and D). The success rates of the
double IL-1β are shown in Table 4.

Discussion
Our results demonstrate that afferent signals in the vagus nerve
encode cytokine-specific information. Using our signal-processing
methods, we show that the electrical signals recorded on the
cervical vagus nerve can be decoded to discriminate between
cytokine-specific signals. Discrimination of the electrical activity
transmitted through peripheral nerves using a preprocessing and
decoding framework provides insights at the interface between
the nervous and immune system.
Afferent signaling is generated through signaling cascades

emanating from receptors. Binding of cytokines such as IL-1β
and TNF to their respective cognate receptors on a subset of
afferent fibers results in the activation of these sensory signals in
the vagus nerve (27, 47). In this study, we demonstrate that TNF
and IL-1β exposure manifests as unique signaling patterns which
persist throughout the recording and are not modified by subsequent
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cytokine injections. These signals are identified as the firing rates
of specific CAP waveforms that could emanate from the acti-
vation of these cytokine-specific receptors. The identification of
specific CAP groups correlating with the administration of TNF
suggests that a subset of vagus nerve fibers is signaling in re-
sponse to individual cytokine challenge. Administration of larger
doses of both cytokines evokes higher firing rates of the CAP
waveforms that initially responded as well as the recruitment of ad-
ditional nerve fibers manifested as a separate response of different
CAP waveforms. These signals could originate at the receptor
level, which, as previous studies have indicated, may be located
directly on sensory neurons (27, 33). Additional to this direct
effect, these sensory signals could also be attributed to indirect
effects, as indicated by the presence of both fast (up to several
seconds) and delayed (up to several minutes) neural responses.
Injection of IL-1β or TNF leads to immune activation, i.e., the re-
lease of other cytokines, ATP, glutamate, or other neurotransmitters
(2, 3, 41), that could be sensed by the vagal afferents. An important
point is that TNF and IL-1β receptors have been previously reported
to colocalize but not necessarily overlap completely (27).
IL-1β signaling generates action potentials in sensory neurons

including the nodose ganglion, dorsal root ganglion, and tri-
geminal nerves (48–51). Previous studies have shown that TNF
and IL-1β increase the excitability and sensitivity of nociceptor
neurons (27, 31, 34, 35). TRPV1 is a ligand-gated nonselective
calcium permeable ion channel. It integrates multiple physical and
chemical stimuli, including vanilloid compounds, low pH, and
noxious heat (37, 52, 53). A subset of vagus sensory afferents,
including unmyelinated C fibers and myelinated Aδ fibers, express
TRPV1 (54, 55). Utilization of the genetic cell-depletion model

for TRPV1+ cells allows us to establish not only that the IL-1β
signal is exclusively sensory in its nature but also that it propagates
through the specific TRPV1+ vagal fibers. TRPV1-Cre/DTA mice
do not have detectable signal changes in vagus nerve activity in
response to IL-1β administration. Taken together, the data presented
here model the afferent signaling of the vagus nerve beginning
with a specific receptor (IL-1 or TNF receptor) and with IL-1β
activating a subset of vagus nerve fibers which are TRPV1+.
Extraneural peripheral nerve recordings, such as the ones used

in this study, have specific benefits and drawbacks compared with
intraneural recordings. While intraneural recordings with pene-
trating electrodes provide a higher signal-to-noise ratio (SNR) and
spatial specificity, extraneural nerve cuff recordings minimize the
risk of damage (56) and have been safely implanted chronically in
humans (57, 58). However, current nerve-surface recordings suffer
from relatively low spatial specificity. While novel nerve electrodes
with multiple contacts are aimed at improving the quality and in-
formation content of the recordings (59–62), parallel attempts
utilizing signal-processing and data-analysis methods have shown
promise in achieving similar goals (63, 64). Until now, however,
linking such signals with functional sensory stimuli has been applied
mainly by using muscle proprioceptive or somatosensory stimuli in
larger nerves (for example sciatic and median nerves). In the current
study, the proposed neural recording data-analysis framework
paired with cytokine injections reveals specific functional pathways
activated by cytokine challenges. As previously demonstrated by
detailed biophysical models (29), differences in the size and spatial
location of activated groups of fibers or fascicles can produce CAP
waveforms, picked up at the surface of the nerve, that differ in their
amplitude and shape. Thus, the strategy of clustering detected CAPs
to different groups based on their waveform properties can potentially
separate signals mirroring the activation of different groups of fibers
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or fascicles. Combining temporal information from the cytokine
challenges with the decomposed CAP waveforms can be further
expanded by the use of multielectrode neural interfaces, en-
abling a deeper understanding of the types of fibers involved in
the decoded signaling of the inflammatory reflex.
The majority of the recordings in this study featured co-occurring

respiratory modulations, an interesting feature that prompted fur-
ther experiments and analysis that confirmed the neural nature of
the CAP waveforms (through the lidocaine experiments). While
micromotion of the cuff electrode relative to the vagus nerve due to
respiratory movements could contribute to these modulations, the
nerve-block experiments showed that it does not account for a
significant percentage of the modulation. One reason for this co-
occurrence would be that these cytokine-related neural impulses
could be occurring throughout the experiment but are compounded,
and thus amplified, by larger-amplitude breathing-related sensory
neural signaling (65). Another possibility would be that respiratory-
related rapidly adapting stretch receptors, along with C fibers, are
also encoding for irritants and cytokines, perhaps mediating cough
responses (66–68). However, further experiments of concurrent vagus
nerve recordings and genetic control of vagal sensory neuron subtypes
are needed to test these hypotheses. Finally, it is possible that
these sensory neural responses could also help mediate mood or
behavioral responses by signaling cytokine changes to emotional
and cognitive centers through the gut–brain axis (2, 3, 69, 70).
While the focus of this study is on the afferent arm of the inflammatory
reflex, similar approaches could be used to resolve the encoding
of other biomarkers related to metabolic, cardiac, or pulmonary
functions.

Methods
Electrophysiological Recordings and Experimental Design.
Animals. All experimental protocols were approved by the Institutional Animal
Care and Use Committee at the Feinstein Institute for Medical Research,
NorthwellHealth,which follows theNIHguidelines forethical treatmentofanimals.
Male BALB/c, C57 Black 6, and IL-1R–KO mice (strain B6.129S7-Il1r1tm1Imx/J)
were purchased from Charles River or Jackson Laboratory and were used be-
tween 8 and 16 wk of age. TRPV1-Cre/DTA or TRPV1 cell-depleted mice were
bred at the Feinstein Institute for Medical Research and were used between
8 and 16 wk of age. (Homozygous TRPV1-Cre males were bred to homozygous
lox-DTA females.) Mice were housed under a 12-h reverse-day light cycle and
had access to food and water ad libitum. Food was withheld for 3–4 h before
nerve recording; during this time the animals continued to have access
to water.
Surgical isolation of the cervical vagus nerve. The surgical and recording methods
have been previously described (71). Mice were inducedwith general anesthesia
using isoflurane at 2.5% in 100% oxygen at a flow rate of 1 L/min for 5 min.
Mice were then placed in the supine position and maintained at 2.0% iso-
flurane during surgery. The core body temperature was monitored with a
rectal probe and was maintained around 37 °C with a heating pad and heat
lamp. To expose the cervical vagus nerve, the neck area was shaved and
cleaned with povidone iodine, and a midline cervical incision was made from
the level of larynx to the sternum. The submaxillary salivary glands were ex-
posed by blunt dissection and separated through the midline fascial plane to
expose the trachea. The bundle is readily identified by the pulsation of the
artery. The cervical vagus nerve was delicately separated from the artery and
desheathed by gently removing the thin connective tissue surrounding the
nerve under magnification. A ground electrode was inserted between the right
salivary gland and the skin. The nerve was then placed on a bipolar sling
platinum-iridium cuff electrode (CorTec) that was submerged briefly in saline

before nerve placement within the cuff (Fig. 1A). The surgical area was covered
with Parafilm to ensure that the nerve and surgical area did not desiccate (27).
Cervical vagus nerve vagotomy. The cervical vagus nerve was isolated as de-
scribed earlier. Before vagotomy, a silk suture was secured to the vagus nerve
with a single knot. A surgical cut of the vagus nerve was performed proximal
to the recording electrode and suture using the brain as the point of
reference.
Recording procedure. The electrophysiological signals for BALB/c, IL1R-KO, and
TRPV1-Cre/DTAmicewere digitized from the cervical vagus nerve using a Plexon
data-acquisition system (OmniPlex; Plexon, Inc.) (27). Isoflurane was maintained
at 1.75% for BALB/c mice and at 1.25% for C57 Black 6, IL1R-KO, and TRPV1-
Cre/DTA mice throughout the recording. Thirty minutes of baseline activity
were recorded followed by an i.p. injection of either TNF (20 μg/kg) or IL-1β
(35 ng/kg) (Fig. 1B). Vagus nerve activity was then acquired for 30 min, followed
by a second injection of the alternate cytokine (TNF or IL-1β). Another 30min of
activity was acquired after the second injection. Control animals were injected
with saline following the design described above (Fig. 1B). Increasing-dose in-
jections were done with the same experimental design; however both injec-
tions were of the same cytokine, with a 10×-higher dose used for the second
injection (200 μg/kg TNF or 350 ng/kg IL-1β). For the lidocaine experiments,
30 min of baseline activity were recorded. Ten microliters of saline were applied
distally on the nerve at 10 or 20 min into baseline recording to establish that
there was no shunting due to the drop of liquid distally to the electrodes; in all
six experiments the activity was not affected by the saline drop. Approximately
30 min into each recording, a 10-μL drop of lidocaine (200 mg/mL concentra-
tion) was applied distally on the nerve, and 30 more minutes of recordings were
acquired. To make sure we were not blocking muscle activity, a small patch of
Parafilm was inserted below the recording electrode and above all other tissue,
limiting the drop of lidocaine to the nerve.

Data Analysis. All recordings and theMatlab code for analysis and algorithms are
available for download at public.feinsteininstitute.org/cbem/PNAS%20Submission/.
The signal-processing framework conditions the raw vagal recordings and ex-
tracts information from them so that we can decode the neural signals to
injection-induced changes in the levels of the inflammatory cytokines IL-1β and
TNF. This framework consists of signal decomposition to cardiac and neural
components, detection of CAP waveforms, dimensionality reduction of the CAP
waveforms, unsupervised CAP clustering, and neural response extraction (Fig.
1C). Finally, a decoding classification algorithm based on the extracted neural
responses predicts injection states (no injection or IL-1β or TNF injection).

Signal Decomposition. Raw surface vagal recordings are an aggregate of nerve
activity and various other signal sources, physiological and nonphysiological
(Fig. 2A). Apart from instrumentation-related sources of interference, in nerve
recordings there are also biological sources of interference, such as cardiac
events. We exploit the duration of the cardiac events due to cardiac action
potentials to filter them from the data. Wavelet decomposition using a
Daubechies 3 (Db3) wavelet at a 5-ms scale was used to isolate cardiac
artifacts, while wavelet decomposition using a Db3 wavelet at a 1-ms scale
was used to emphasize CAPs (Fig. 2B).

Detection of Action Potentials. Vagus nerve recordings acquired at the cervical
level typically include a respiratory modulation of the signal envelop (67, 72),
causing the statistics associated with the signals to be cyclostationary. For this
reason, an adaptive CAP threshold was preferred from a constant-valued
threshold, and a smallest of constant false-alarm rate (SO CFAR) filter (73)
was used to determine the threshold that rides on the respiratory modulation.
CFAR filters use a sliding window to estimate the background statistics of a
signal so that a threshold that maintains a constant false-alarm rate on aver-
age can be applied on a per-window basis. This allows the threshold to
accommodate relatively abrupt transitions in the background statistics. The
parameters of the threshold that was used across all subjects were the window

Table 3. Population results of the responders for the double-
dose experiments

Group Responders/total % responders

Wild type, IL-1β 1st
dose → IL-1β 2nd dose

5/7 71.4

Wild type, TNF 1st
dose → TNF 2nd dose

4/6 66.7

Table 4. Population results of the decoding algorithm accuracy
on the double-dose experiments

Group Baseline Low dose High dose

Wild type, IL-1β low
dose → IL-1β high dose

87.5 ± 18.3 74.6 ± 15.8 91.5 ± 10.5

Wild type, TNF low
dose → TNF high dose

91.3 ± 8.6 76.2 ± 22.8 67.1 ± 31.9

Data are shown as mean ± SD.
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duration (188 ms on each side), the guard cell duration (13 ms on each side),
and the threshold level (3 SDs from the mean). These parameters were heu-
ristically chosen based on empirical results that were dependent on the period
and duty cycle of the respiratory modulation, which was similar for all subjects.
We applied this adaptive threshold to the decomposed neural signal (from the
1-ms db3 wavelet decomposition) and identified CAP instances (Fig. 2C).

The cardiac-enhanced signal was also thresholded using a constant
threshold to detect the times at which cardiac events occurred. Detected CAPs
that coincided with detected cardiac events were discarded. A refractory
period of 1 ms was also applied to prevent multiple threshold crossings right
after the detection of a CAP.

Dimensionality Reduction. Once a set of CAP waveforms had been detected
through thresholding, groups of CAP waveforms were identified based on
their shape and amplitude through nonlinear dimensionality reduction fol-
lowed by unsupervised clustering.We hypothesized that these distinct groups
of CAPs correspond to individual or groups of fibers within the vagus nerve
that are firing to create the different shape and amplitude CAP waveforms
picked up at the surface of the nerve.

The t-SNE method was used to perform nonlinear dimensionality reduction.
t-SNE converts the distances between the data points to Gaussian and t-distributed
joint probabilities in the high- and low-dimensional spaces, respectively, and it
subsequently attempts to minimize the Kullback–Leibler divergence between the
joint distributions as a way to preserve similarity between the data points in the
original and reduced spaces (74). The dimensionality of the original space, typically
120 samples corresponding to the number of samples in a detected CAP wave-
form, is reduced to two dimensions.

Since t-SNE has O(NlogN) complexity and uses O(N2) memory and because in
a typical 90-min vagal recording it is common to detect more than 100,000
CAPs, the kernel t-SNE extension (75) was employed to reduce the data points
on which the dimensionality reduction is performed. The kernel t-SNE exten-
sion uses kernels to approximate the local curvature of the original manifold
and provides a way to predict where new points would map in the reduced
dimensional space, as long as appropriate kernel parameters are chosen. Five
thousand CAP waveforms were uniformly sampled throughout the entire re-
cording; t-SNE was performed on this subset of detected waveforms, and
kernel t-SNE was subsequently used. The method formed clusters in the data
when there were distinct CAP waveform shapes and amplitudes (Fig. 2D).

Unsupervised Classification. Once dimensionality reduction was performed,
the DBSCAN clustering algorithm (76) was used as an unsupervised method
that identified and separated distinct clusters. DBSCAN was applied only to
the original t-SNE data points, since it also scales O(N2) in memory. The two
parameters of the method were chosen heuristically: The density parameters
were set to 5.9 and 10, and the minimum number of points required to form
a cluster was set to 30. K-nearest neighbors (KNN) with K = 5 was used to
perform semisupervised classification for the remainder of the CAP wave-
forms that were mapped using kernel t-SNE.

Neural Response Extraction. Each cluster of CAP waveforms can be inspected
visually by the average waveform and the distribution of inter-CAP intervals
(Fig. 2D) to reveal artifacts (waveform widths of more than 3 ms, abnormal
shapes or discontinuities in the waveform, abnormal peaks in the inter-CAP
intervals), which were discarded from further analysis.

As mentioned earlier, the main hypothesis for sorting CAP waveforms into
different groups (clusters) is that different CAP waveform shapes and ampli-
tudes represent the activity of different groups of nerve fibers. To derive the
firing rates of these groups, event rates were computed by binning the de-
tected CAPwaveforms of each group in 1-s windows, resulting in an event-rate
signal measured in CAPs per second (Fig. 3). The event rates of the different
CAP groups contain features that could be correlated with the cytokine in-
jections and could be used for neural decoding of the different states.

Determining Responsive Sensory Neural Groups. Naturally, not all sensory
neural groups are expected to contain information related to changes in cy-
tokines. While consistent changes in the event rates of specific CAP clusters
directly after a cytokine injection were observed, many CAP clusters had event

rates that fluctuated in ways unrelated to the experimental challenges. To
reduce model complexity while increasing efficiency, a method to determine
responders—CAP clusters that exhibited significant event-rate modulations
due to cytokine injection—was developed. By measuring the SD, σ, of the
baseline activity (between 10 and 30 min from the initiation of recording) and
the mean firing rate, μ, for 4 min before an injection, a threshold was set at μ ±
k*max(σmin, σ) and was applied to the signal corresponding to 10–30 min after
each injection. The parameter k is a constant, and σmin is a lower bound on the
measured SD, so that the response in cases of very-low-amplitude baseline SDs
does not become sensitive to insignificant changes in the firing rate. Since we
are interested in sustained responses, for a CAP waveform cluster to be labeled
as a responder, the firing rate at the specified postinjection time has to be
above the upper bound [μ + k*max(σmin, σ)] or below the lower bound [μ −
k*max(σmin, σ)] for at least one-third of the postinjection duration (7 min).

Based on these criteria, two of the seven subjects that were given saline
injections appeared to elicit a vagal response.We thusmaximized the number
of cytokine responders constrained to a false-alarm rate of two saline re-
sponders by performing a grid search over k, σmin, and the event-rate
smoothing parameter, s, yielding the values k = 2.5, σmin = 2, and s = 5;
23 of 39 mice were responders to at least one of the two cytokine injections.

Respiratory-Modulation Detector. Since a large number of the CAP impulses
detected occurmainly during respiratory bursts, we needed to robustly detect the
respiratory-related modulation in our signal and quantify the exact amount of
impulses that occur during its duration. Thus, a respiratory-modulation detector
was developed thatwas able tomeasure the time of occurrence and the duration
of these modulations. A rolling SD of the recordings was computed. The peaks of
the rolling SD signal constrained by the minimum peak distance, minimum peak
prominence, minimum peak width, and maximum peak width were found. The
minimum peak width constraint complemented the outlier filtering, and the
minimum peak width was set slightly larger than the rolling window duration.
The maximum peak width constraint was used to avoid detecting unrealistically
longbursts thatmay occur in low-SNR conditions. Theminimumpeakprominence
constraint was used for the sensitivity/specificity trade-off: Too low a value would
detect too many false respiratory bursts, and too high a value would miss many
real respiratory bursts. The minimum peak distance was a constraint that sets a
lower bound the respiratory rate.

After detecting the respiratory intervals and the locations of the CAPs, we
counted the CAPs that occurred within the respiratory intervals and computed
their percentage relative to their total number throughout the recording. Since
the measured rate of these respiratory modulations was roughly 1/s, and their
durationnever exceeded250ms, CAPgroupswithmore thanhalf of their impulses
occurring during this modulation were considered respiration synchronized.

Neural Decoding. To assess whether neural responses to cytokine injections can be
used to determine the state of the subject, a Gaussian Naive Bayes classifier was
trained using only responsive CAPs. To avoid overfitting, threefold cross-validations
were repeated 30 times as a form of ensemble averaging. The confusion matrix, a
table that relates theactual class to thepredicted class,was formedby summing the
posterior probabilities of the class that has the maximum posterior. In this appli-
cation, the three classes, corresponding to the different states of the subject, were
baseline, IL-1β injection, and TNF injection. These classes corresponded to activity
from 10min after an injection or the start of the recording until the next injection,
which occurred 30 min following the initial injection. The first 10 min of the
postinjection recordings were not used to avoid training on transient responses,
which usually occurred during that specific period. We quantified the predictive
ability of the decoder by estimating the percentage of correct classifications on
out-of-sample data. The percent correct of the decoder was determined as the
true positives of the classifier weighted by the confidence of the prediction.
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